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1.0  Introduction 

Adaptive Programming (AP) is a programming technology where programs are split into 

crosscutting building blocks in a novel way to control tangling and redundancy. In AP, at 

least one of the building blocks is represented by a graph and other building blocks refer 

to subgraphs of the graph without revealing the details of the subgraphs. This is a form of 

succinct specification of graphs similar to the hierarchical specification of graphs widely 

used in hardware and software designs. A succinct specification can be expanded to a flat 

representation that is usually much larger than the succinct representation.  

 

DARPA and Rome Laboratory have supported the work of the Demeter Research group 

since 1996. This report, written in April 2000 and updated in July 2002, summarizes the 

direction and accomplishments of our research over this period. Our results have been put 

on the web on a regular basis. In this final report, we summarize the most important 

information and provide links to the sources. The supported work falls in the domain of 

our research mission. 

 

Mission of the Demeter Research Group  

 

Our mission is to improve on current leading-edge software development practices using 

ideas from programming languages and software engineering. We build on technology 

that has industry acceptance, we propose improvements and we build tools and write 

papers to make the benefits of our improvements readily available. We strive for our 

technology to be self-evidently important and useful. 

 

We teach the technology that we develop, after it has sufficiently matured, in graduate 

and advanced undergraduate courses and in tutorials at conferences. We distribute the 

software through the web to get feedback from external users. 

 

Our focus (since 1985) is on Separation of Concerns (SOC) technology. 
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1. The job of a SOC technology is to turn a tangled and scattered implementation of 

a concern into a well-modularized implementation of the concern.  

 

2. The job of an AOOSD (Adaptive Object-Oriented Software Development) 

technology, a special case of SOC, is to turn a tangled and scattered 

implementation of a concern into a well-modularized implementation of the 

concern that frees the programmer from details of the classes or methods where 

the implementation is scattered. The well-modularized concern is applicable to a 

family of diverse classes and uses some form of succinct representation, e.g., 

regular expressions or traversal specifications.  

 

3. The job of an AOSD (Aspect-Oriented Software Development), a special case of 

SOC, is to turn a tangled and scattered implementation of a crosscutting concern 

into a well-modularized implementation of the concern.  

 

 The exact relationship between SOC, AOOSD and AOSD is still being worked out (see 

AOP in Demeter). 

 

The mission has been successful and has led to major adoptions of our techniques in 

standard tools. Some examples: Xpath, JAXB, AspectJ, UML class diagrams. Our 

techniques have also been adopted in company specific tools, e.g., in a mission-critical 

tool at Verizon. 

 

Research Group Members 

 

The research group over this period has consisted of faculty member Karl Lieberherr (PI), 

Mira Mezini (University of Siegen and NU), Jens Palsberg (MIT and Purdue University), 

Boaz Patt-Shamir, Mitchell Wand.  In support of the faculty have been students: Crista 

Lopes (supported by Xerox PARC), Doug Orleans, Kedar Patankar, Binoy Samuel, Linda 

Seiter, Johan Ovlinger, Joshua Marshall, and Geoff Hulten.  
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2.0  Research 

Our most promising work is in the areas of collaborations (in the UML sense) and 

adapters. An OOPSLA 1998 paper (AP&PC Adaptive Plug&Play Components, 

http://www.ccs.neu.edu/research/demeter/biblio/components.html) describes the key 

ideas. Follow on papers are by Stefan Hermann and Mira Mezini at OOPSLA 2000 and 

by Mira Mezini and Klaus Ostermann at OOPSLA 2002.  Collaborations express 

systems by starting with a basic system and adding more and more reusable 

enhancements (both functional and systemic) using adapters. Our work on adapters is 

described in the paper PCA.  PCA stands for Pluggable Composite Adapter. AP&PC is 

integration work on Aspect-Oriented Programming and multi-dimensional separation of 

concerns. In AOP in Demeter we describe how we use AOP in Demeter in 5 different 

ways. 

Adapters are made robust with respect to structural changes by using traversal strategies. 

Traversal strategies are a cornerstone of Adaptive Programming (AP). A patent that was 

applied for with a previous NSF grant has been refined with support by this grant (US 

Patent 5,946,490, issues Aug. 31, 1999). The work behind this patent provides an 

automata and graph theory of adaptive programming (Autonata and Graph Theory AP). 

More work on the theory of adaptive programming is referenced in the semantics section 

of the Demeter web page. A comparison of AP and object-oriented technology is also 

available. 

 

To experiment with and evaluate the abstractions proposed, we built several tools. The 

most powerful one is DemeterJ but it also has a high learning curve. Therefore, we 

developed DJ, a less powerful and efficient but much easier to learn and use. The 

simplicity and ease of use helps to soften the learning curve associated with DemeterJ. 

Both DemeterJ and DJ use an implementation of traversal strategies that we have 

factored out into a separate AP Library . 
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The AP Library contains the core algorithm for expanding a succinct representation of a 

graph into a flat, detailed representation of a graph. A succinct specification is given by a 

strategy graph.  

 

Definition: Given a graph G, a strategy graph S of G is any subgraph of the transitive 

closure of G. The flat representation of a strategy graph S with respect to G is 

(in many cases) the subgraph of G that consists of all paths in G that is 

expansions of paths in S.  

 

The problem the AP Library solves is (in simplified form): Given as input a strategy 

graph S and a graph G, return the flat representation of S with respect to G. The flat 

representation is the set of paths in G defined by S and is called a traversal graph.  

 

DemeterJ success at Verizon shows that DemeterJava is a powerful tool used by a 

Fortune 10 company in a mission-critical application.  Demeter ideas have also been used 

in XML technology. We developed a pattern langauge for AP  that facilitates the use of 

adaptive programming ideas. 

We have also worked with Tendril Software Inc. who  developed  Structure Builder . 

Tendril Software was recently acquired by WebGain. StructureBuilder uses some of the 

ideas developed under this grant.  See the joint paper: "Interaction Schemata: Compiling 

Interactions to Code" .  

During the time of this grant, until the end of 1997, Cristina Lopes worked on her 

Northeastern PhD thesis on D and Aspect-Oriented Programming. She was supported by 

Xerox PARC with Gregor Kiczales as her co-advisor as well as the PI advisor. Her thesis 

work was the starting point of much of our most productive work on aspect-oriented 

programming.   
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 3.0 Key Publications 

The papers with publication dates from 1997 to 2000 have been supported by this 

DARPA grant and are available on the web at 

http://www.ccs.neu.edu/research/demeter/papers/publications.html.  The abstracts of  a 

selection of six important papers are listed below.  A complete listing of  papers can be 

found in Section 8, References. 

 

3.1  “Adaptive Plug-and-Play Components for Evolutionary Software Development” 
 

Mira Mezini and Karl Lieberherr 

October 1998 

Abstract 

 

In several works on design methodologies, design patterns, and programming language 

design, the need for program entities that capture the patterns of collaboration between 

several classes has been recognized. The idea is that in general the unit of reuse is not a 

single class, but a slice of behavior affecting a set of collaborating classes. The absence 

of large-scale components for expressing these collaborations makes object-oriented 

programs more difficult to maintain and reuse, because functionality is spread over 

several methods and it becomes difficult to get the "big picture". In this paper, we 

propose Adaptive Plug and Play Components to serve this need. These components are 

designed such that they not only facilitate the construction of complex software by 

making the collaborations explicit, but they do so in a manner that supports the 

evolutionary nature of both structure and behavior.  

 

Download from ftp://ftp.ccs.neu.edu/pub/people/lieber/appcs.pdf 
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3.2                  "Programming with Aspectual Components" 
 

KARL LIEBERHERR , DAVID LORENZ , and MIRA MEZINI 

 

April 1, 1999 

 

Abstract 

 

Aspect-oriented programming (AOP) controls tangling of concerns by isolating aspects 

that crosscut  each other into building blocks. Component-based programming (CBP) 

supports software development  by isolating reusable building blocks that can be 

assembled and connected in many different ways. We  show how AOP and CBP can be 

integrated by introducing a new component construct for programming  class 

collaborations, called aspectual component. Aspectual components extend adaptive 

plug-and-play  components (AP&P) with a modification interface that turns them into an 

effective tool for AOP. A key ingredient of aspectual components is that they are written 

in terms of a generic data model, called a participant graph, which is later mapped into a 

data model. We introduce a new property of this map, called instance-refinement, to 

ensure the proper deployment of components. We show how aspectual components can 

be implemented in Java, and demonstrate that aspectual components improve the AspectJ 

language  for AOP from Xerox PARC.  

 

Download from 

 http://www.ccs.neu.edu/research/demeter/papers/aspectual-comps/aspectual1.ps 
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3.3 "Traversals of Object Structures: Specification and Efficient Implementation" 
 

Karl Lieberherr , Boaz Patt-Shamir 

 

August 29, 1997 

 

Abstract 

 

Traversal of object structures is one of the ubiquitous routines in most types of 

information  processing. In this paper we present a new approach, called strategies, to the 

task of traversing  object structures. In our approach traversals are defined using a 

high-level directed graph description, which is compiled into a dynamic road map to 

assist run-time traversals. The complexity of  the compilation algorithm is polynomial in 

the size of the strategy graph and the class graph of the  given application. The 

implementation is practical and allows for dynamically creating and modifying the 

existing traversal strategy. A prototype of the system has been developed and is being  

successfully used. Previous approaches to traversal specifications were less general 

(corresponding  to either a series-parallel or a tree graph), and their compilation 

algorithms were of exponential complexity in some cases. In an additional result we show 

that this bad behavior is inherent to the static traversal code generated by previous 

implementations, where traversals are carried out by invoking methods without 

parameters.  

 

Download from  

ftp://ftp.ccs.neu.edu/pub/people/lieber/strategies.ps 
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3.4                "The Refinement Relation of Graph-Based Generic Programs" 
 

Karl Lieberherr and Boaz Patt-Shamir 

 

September 1998 

 

Abstract 

  

This paper studies a particular variant of Generic Programming, called Adaptive 

Programming (AP). We explain the approach taken by Adaptive Programming to attain 

the goals set for Generic Programming. Within the formalism of AP, we explore the 

important problem of refinement: given two generic programs, does one express a subset 

of the programs expressed by the other? We show that two natural definitions of 

refinement coincide, but the corresponding decision problem is computationally 

intractable (co-NP-complete). We proceed to define a more restricted notion of 

refinement, which arises frequently in the practice of AP, and give an efficient algorithm 

for deciding it. 

 

Download from  

ftp://ftp.ccs.neu.edu/pub/people/lieber/graph-refine.ps 
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3.5.   "Component Integration with Pluggable Composite Adapters" 
 

Mira Mezini,  Linda Seiter, and  Karl Lieberherr 

 

January 2000 

 

Abstract 

 

In this paper we address object-oriented component integration issues. We argue 

that traditional framework customization techniques are inappropriate for 

component-based programming since they lack support for non-invasive, 

encapsulated, dynamic customization. We propose a new language construct, 

called a pluggable composite adapter, for expressing component gluing. A 

pluggable composite adapter allows the separation of customization code from 

component implementation, resulting in better modularity, flexible extensibility, 

and improved maintenance and understandability. We also discuss alternative 

realizations of the construct.  

Download from  

http://www.ccs.neu.edu/home/lieber/s/compoint/composite-adapter.pdf 
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3.6.                  "Interaction Schemata: Compiling Interactions to Code" 
 

Neeraj Sangal, Edward Farrell, Karl Lieberherr, David Lorenz 

October 1998 

Abstract 

  

Programming object interactions is at the heart of object-oriented programming. To 

improve reusability of the interactions, it is important to program object interactions 

generically. We present two tools that facilitate programming of object interactions. 

StructureBuilder, a commercial tool, achieves genericity with respect to data structure 

implementations for collections, following ideas from generic programming, but 

focussing only on the four most important actions add, delete, iterate and find that are 

used to translate UML interaction diagrams into code. The focus of StructureBuilder is to 

generate efficient code from interaction schemata that are an improved form of 

interaction diagrams. DJ, a new research prototype intended for fast prototyping, achieves 

genericity with respect to the UML class diagram by dynamic creation of  collections 

based on traversal specifications.  

  

Download from   

http://www.ccs.neu.edu/research/demeter/papers/generic-actions/tools99.ps 
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4.0 Teaching 

 

The  Demeter Seminar helped to disseminate the techniques as well as the courses 

Adaptive Object-Oriented Software and Advanced Object-Oriented Systems. The tools 

Demeter/Java and DJ are used in both courses. We developed tutorials related to 

Adaptive Programming both for ICSE 1997 and 2000.  

Two PhD theses were completed with partial funding from this grant:  

Linda Seiter  

"DESIGN PATTERNS FOR MANAGING EVOLUTION", 1996, 

and  

Cristina Lopes  
"A LANGUAGE FRAMEWORK FOR DISTRIBUTED PROGRAMMING, 1997.
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5.0 Future Plans: The Tool Evolution Strategy of the Demeter Team 

 

Following Alistair Cockburn (see his book on Agile Software Development), we view 

software development as a group game,  which is goal seeking, finite and cooperative. 

We work together with our sponsors to produce working and useful systems. 

 

Our mission is described at http://www.ccs.neu.edu/home/lieber/mission.html 

 

The goal we seek is better separation of concerns. The game is finite from the point of 

each student (undergraduate or graduate student) who participates and from the point of 

view of each project which is funded for a finite time. But from the perspective of the 

Demeter Team, the game is "infinite"  (for the next 15 years and hopefully much longer) 

in that each game that finishes should set the stage for the next game. 

 

Currently we have three tools that we support: 

 

DemeterJ http://www.ccs.neu.edu/research/demeter/DemeterJava/ 

DJ http://www.ccs.neu.edu/research/demeter/DJ/ 

DAJ http://www.ccs.neu.edu/research/demeter/DAJ  

 

 

DJ and DAJ are built on the AP Library which can be found at 

http://www.ccs.neu.edu/research/demeter/AP-Library/ 

 

Our current plan is to stop further development of DemeterJ and put the most useful 

features of DemeterJ into DAJ. 

 

DemeterJ has served its purpose very well and introduced several innovations on top of 

the older Demeter/C++. but DemeterJ uses a non-standard programming language for 
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Adaptive Programming. In DAJ we found a way to express  many of those capabilities 

just using a small extension to AspectJ. We basically introduce three new declarations 

in AspectJ: TraversalGraph, ClassGraph, Visitor and Behavior declarations. 

 

DAJ will get the following capabilities: 

 

a. Declare TraversalGraphs, ClassGraphs, Visitor and Behaviors. 

   Implemented using the AP Library. 

 

b. Use class dictionaries and generate a parser and a print visitor. 

 

c. Generate the other visitors that DemeterJ supports (Display Visitor, etc.). 

 

d. Use XML schemas and generate code a la JAXB. 

 

e. Use AspectJ as the weaver rather than the weaver currently in DemeterJ. 

 

f. Any legal Java or AspectJ program will be a legal DAJ program. 

 

DAJ is implemented using good separation of concerns at the cost of some minor user 

inconvenience. The DAJ implementation  extends the AspectJ language with four kinds 

of declarations but it does so without depending on the internals of the AspectJ compiler. 

It only uses the published AspectJ language features.  The AspectJ Team can modify 

their compiler anyway they want provided they maintain the interface. 

 

The user inconveniences are: 

 

i. DAJ users must put traversal-related concern declarations in separate files 

called *.trv.  
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ii. There is no traversal pointcut traversal(t) available for traversal t. Instead users 

must use call( * t(*)) and make sure t is not  used outside the traversal. 

 

While we gradually replace DemeterJ, we want to keep DJ around for the 

following reasons: 

 

i. DJ provides for a quick introduction to programming traversal-related aspects just 

using ordinary Java. 

 

ii. DJ allows for easy prototyping and testing of ideas, before they will be added to 

DAJ. 

 

iii. DJ allows for dynamic adaptability not available in DAJ. DJ and DAJ can be 

used together in the same program. 

 

Our plans for Eclipse (http://www.eclipse.org/): 

The AspectJ Team is developing a plug-in for Eclispe. 

We hope to build on that plug-in and add the DAJ specific capabilities: 

 

Given a class graph in textual form (in black), we can highlight 

 

1. the scope of a traversal (in red)  

 

2. the scope of a behavior specification  (traversal (in red) and visitor nodes (in 

blue) and edges (in green)) in this class graph. 

 

If Eclipse has support for UML class diagrams, we can display the scope 

of a traversal graphically in the UML class diagram.  
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We are also planning to add Johan Ovlinger's tool on Aspectual Collaborations    to 

Demeter's suite of tools. 
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6.0 Conclusion 

 
This project made several contributions to the field of aspect-oriented software 

development:  

 

(1) an efficient algorithm for implementing traversal related concerns (exponential 

improvement);  

 

(2) a more succinct way to specify traversal-related aspects (exponential 

improvement);  

 

(3) the concept of aspectual components that integrates the idea of aspects with the 

idea of components.  

 

On the implementation side we developed software (DemeterJ) that is used by a 

Fortune 100 company in a mission critical application and our tools are used in 

numerous educational projects as well. 

 

The technology we have developed is useful in many domains. The development of 

agent-based systems and its inherent complexities has come to the forefront of software 

systems  in the past few years.  The power and versatility of Aspect-Oriented 

Programming and Adaptive Programming paradigms are well suited for addressing the 

complexities of design and maintenance of such systems. We believe that the application 

of AOP and AP to agent-based systems will contribute greatly to design, implementation, 

and maintenance of these systems as well as software development in general.
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